220 research outputs found

    Balancing Global Exploration and Local-connectivity Exploitation with Rapidly-exploring Random disjointed-Trees

    Full text link
    Sampling efficiency in a highly constrained environment has long been a major challenge for sampling-based planners. In this work, we propose Rapidly-exploring Random disjointed-Trees* (RRdT*), an incremental optimal multi-query planner. RRdT* uses multiple disjointed-trees to exploit local-connectivity of spaces via Markov Chain random sampling, which utilises neighbourhood information derived from previous successful and failed samples. To balance local exploitation, RRdT* actively explore unseen global spaces when local-connectivity exploitation is unsuccessful. The active trade-off between local exploitation and global exploration is formulated as a multi-armed bandit problem. We argue that the active balancing of global exploration and local exploitation is the key to improving sample efficient in sampling-based motion planners. We provide rigorous proofs of completeness and optimal convergence for this novel approach. Furthermore, we demonstrate experimentally the effectiveness of RRdT*'s locally exploring trees in granting improved visibility for planning. Consequently, RRdT* outperforms existing state-of-the-art incremental planners, especially in highly constrained environments.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Real-time Aerial Detection and Reasoning on Embedded-UAVs

    Full text link
    We present a unified pipeline architecture for a real-time detection system on an embedded system for UAVs. Neural architectures have been the industry standard for computer vision. However, most existing works focus solely on concatenating deeper layers to achieve higher accuracy with run-time performance as the trade-off. This pipeline of networks can exploit the domain-specific knowledge on aerial pedestrian detection and activity recognition for the emerging UAV applications of autonomous surveying and activity reporting. In particular, our pipeline architectures operate in a time-sensitive manner, have high accuracy in detecting pedestrians from various aerial orientations, use a novel attention map for multi-activities recognition, and jointly refine its detection with temporal information. Numerically, we demonstrate our model's accuracy and fast inference speed on embedded systems. We empirically deployed our prototype hardware with full live feeds in a real-world open-field environment.Comment: In TGR

    Interpretable Medical Imagery Diagnosis with Self-Attentive Transformers: A Review of Explainable AI for Health Care

    Full text link
    Recent advancements in artificial intelligence (AI) have facilitated its widespread adoption in primary medical services, addressing the demand-supply imbalance in healthcare. Vision Transformers (ViT) have emerged as state-of-the-art computer vision models, benefiting from self-attention modules. However, compared to traditional machine-learning approaches, deep-learning models are complex and are often treated as a "black box" that can cause uncertainty regarding how they operate. Explainable Artificial Intelligence (XAI) refers to methods that explain and interpret machine learning models' inner workings and how they come to decisions, which is especially important in the medical domain to guide the healthcare decision-making process. This review summarises recent ViT advancements and interpretative approaches to understanding the decision-making process of ViT, enabling transparency in medical diagnosis applications

    Bio-economic and structural equation modelling for ecosystem-based management and ecosystem accounting : Fisheries management in the Baltic Sea

    Get PDF
    Ecosystem-based management is necessary for management of marine ecosystems because they are affected by multiple impacts, and some synergistic effects or conflicts may exist among these impacts and the possible solutions. This thesis applies three different approaches to contribute to ecosystem-based management. First, this research develops a multispecies bio-economic model that is able to consider food web interactions, different types of fisheries, and the various economic benefits provided by multiple ecosystem services. The developed model focuses on a food web consisting of migratory fish (salmon; Salmo salar), mammalian predators (grey seals; Halichoerus grypus), and schooling fish (herring; Clupea harengus) in the Baltic Sea. Additionally, the included ecosystem services include both provisioning and non-market cultural services, such as ecosystem services for fisheries, recreation and the existence of the species. By applying optimization approaches, the developed model is used to examine fisheries management. Second, structural equation modelling is applied to explore the causal relationship among climate and environmental factors, fisheries, prey availability and competitors to the salmon population. The last applied approach was ecosystem accounting, which is able to reveal the economic implications of ecosystem changes and the use of ecosystem services by different economic sectors. A framework integrating the ecosystem services and accounting system is proposed with a marine case study. Furthermore, the developed multispecies bio-economic model is applied with different valuation approaches to value the marine ecosystem for ecosystem accounting. By applying different approaches, this thesis provides insight and recommendations for ecosystem-based management from various perspectives.

    An empirical study of proximity effect of comprehensive commercial development on adjacent private residential property price

    Get PDF
    Includes bibliographical references (p. 110-115).Thesis (B.Sc)--University of Hong Kong, 2008.published_or_final_versio

    Feasibility study of constructing a screening tool for adolescent diabetes detection applying machine learning methods

    Get PDF
    Prediabetes and diabetes are becoming alarmingly prevalent among adolescents over the past decade. However, an effective screening tool that can assess diabetes risks smoothly is still in its infancy. In order to contribute to such significant gaps, this research proposes a machine learning-based predictive model to detect adolescent diabetes. The model applies supervised machine learning and a novel feature selection method to the National Health and Nutritional Examination Survey datasets after an exhaustive search to select reliable and accurate data. The best model achieved an area under the curve (AUC) score of 71%. This research proves that a screening tool based on supervised machine learning models can assist in the automated detection of youth diabetes. It also identifies some critical predictors to such detection using Lasso Regression, Random Forest Importance and Gradient Boosted Tree Importance feature selection methods. The most contributing features to Youth diabetes detection are physical characteristics (e.g., waist, leg length, gender), dietary information (e.g., water, protein, sodium) and demographics. These predictors can be further utilised in other areas of medical research, such as electronic medical history

    Ensemble Learning based Anomaly Detection for IoT Cybersecurity via Bayesian Hyperparameters Sensitivity Analysis

    Full text link
    The Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability of communicating with other connected devices with little to no human intervention. IoT enables data aggregation and analysis on a large scale to improve life quality in many domains. In particular, data collected by IoT contain a tremendous amount of information for anomaly detection. The heterogeneous nature of IoT is both a challenge and an opportunity for cybersecurity. Traditional approaches in cybersecurity monitoring often require different kinds of data pre-processing and handling for various data types, which might be problematic for datasets that contain heterogeneous features. However, heterogeneous types of network devices can often capture a more diverse set of signals than a single type of device readings, which is particularly useful for anomaly detection. In this paper, we present a comprehensive study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly detection. Rather than using one single machine learning model, ensemble learning combines the predictive power from multiple models, enhancing their predictive accuracy in heterogeneous datasets rather than using one single machine learning model. We propose a unified framework with ensemble learning that utilises Bayesian hyperparameter optimisation to adapt to a network environment that contains multiple IoT sensor readings. Experimentally, we illustrate their high predictive power when compared to traditional methods
    • …
    corecore